Adaptive meshless Galerkin boundary node methods for hypersingular integral equations
نویسندگان
چکیده
منابع مشابه
Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations
The general Meshless Local PetrovGalerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradie...
متن کاملGalerkin Methods for Singular Integral Equations
The approximate solution of a singular integral equation by Galerkin's method is studied. We discuss the theoretical aspects of such problems and give error bounds for the approximate solution.
متن کاملGalerkin Methods for Second Kind Integral Equations
This paper discusses the numerical solution of Fredholm integral equations of the second kind which have weakly singular kernels and inhomogeneous terms. Global convergence estimates are derived for the Galerkin and iterated Galerkin methods using splines on arbitrary quasiuniform meshes as approximating subspaces. It is observed that, due to the singularities present in the solution being appr...
متن کاملAdaptive methods for boundary integral equations: Complexity and convergence estimates
This paper is concerned with developing numerical techniques for the adaptive application of global operators of potential type in wavelet coordinates. This is a core ingredient for a new type of adaptive solvers that has so far been explored primarily for PDEs. We shall show how to realize asymptotically optimal complexity in the present context of global operators. “Asymptotically optimal” me...
متن کاملWavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature
In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on algorithmical details of the scheme, in part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2012
ISSN: 0307-904X
DOI: 10.1016/j.apm.2011.12.033